255 research outputs found

    Controlling chaos in diluted networks with continuous neurons

    Full text link
    Diluted neural networks with continuous neurons and nonmonotonic transfer function are studied, with both fixed and dynamic synapses. A noisy stimulus with periodic variance results in a mechanism for controlling chaos in neural systems with fixed synapses: a proper amount of external perturbation forces the system to behave periodically with the same period as the stimulus.Comment: 11 pages, 8 figure

    Chaos in neural networks with a nonmonotonic transfer function

    Full text link
    Time evolution of diluted neural networks with a nonmonotonic transfer function is analitically described by flow equations for macroscopic variables. The macroscopic dynamics shows a rich variety of behaviours: fixed-point, periodicity and chaos. We examine in detail the structure of the strange attractor and in particular we study the main features of the stable and unstable manifolds, the hyperbolicity of the attractor and the existence of homoclinic intersections. We also discuss the problem of the robustness of the chaos and we prove that in the present model chaotic behaviour is fragile (chaotic regions are densely intercalated with periodicity windows), according to a recently discussed conjecture. Finally we perform an analysis of the microscopic behaviour and in particular we examine the occurrence of damage spreading by studying the time evolution of two almost identical initial configurations. We show that for any choice of the parameters the two initial states remain microscopically distinct.Comment: 12 pages, 11 figures. Accepted for publication in Physical Review E. Originally submitted to the neuro-sys archive which was never publicly announced (was 9905001

    Diluted neural networks with adapting and correlated synapses

    Full text link
    We consider the dynamics of diluted neural networks with clipped and adapting synapses. Unlike previous studies, the learning rate is kept constant as the connectivity tends to infinity: the synapses evolve on a time scale intermediate between the quenched and annealing limits and all orders of synaptic correlations must be taken into account. The dynamics is solved by mean-field theory, the order parameter for synapses being a function. We describe the effects, in the double dynamics, due to synaptic correlations.Comment: 6 pages, 3 figures. Accepted for publication in PR

    Unequal effects of the national lockdown on mental and social health in Italy

    Get PDF
    With the exception of a few countries that chose a different approach, the worldwide reaction to the COVID-19 pandemic was a (longer or shorter) period of national lockdown. While the economic consequences of shutting down national economies were immediately evident, the sociopsychiatric implications of the social confinement of the entire population remain hidden and not fully understood. Italy has been the first European country to be severely impacted by the COVID-19 pandemic, to which it responded through strict lockdown measurements. The results of a timely survey on mental and social health, carried out by students and teachers of a middle school in Rome, might help identify the most vulnerable groups of the population. This evidence could be crucial in conceiving and enacting targeted public health policies to mitigate the consequences of the pandemic on mental health and to prevent intolerance to containment measures in some population segments, which could hamper worldwide efforts in the fight against COVID-19

    Phase ordering in chaotic map lattices with conserved dynamics

    Full text link
    Dynamical scaling in a two-dimensional lattice model of chaotic maps, in contact with a thermal bath, is numerically studied. The model here proposed is equivalent to a conserved Ising model with coupligs which fluctuate over the same time scale as spin moves. When couplings fluctuations and thermal fluctuations are both important, this model does not belong to the class of universality of a Langevin equation known as model B; the scaling exponents are continuously varying with the temperature and depend on the map used. The universal behavior of model B is recovered when thermal fluctuations are dominant.Comment: 6 pages, 4 figures. Revised version accepted for publication on Physical Review E as a Rapid Communicatio

    Clustering data by inhomogeneous chaotic map lattices

    Full text link
    A new approach to clustering, based on the physical properties of inhomogeneous coupled chaotic maps, is presented. A chaotic map is assigned to each data-point and short range couplings are introduced. The stationary regime of the system corresponds to a macroscopic attractor independent of the initial conditions. The mutual information between couples of maps serves to partition the data set in clusters, without prior assumptions about the structure of the underlying distribution of the data. Experiments on simulated and real data sets show the effectiveness of the proposed algorithm.Comment: 8 pages, 6 figures. Revised version accepted for publication on Physical Review Letter

    Multivariate analysis of brain metabolism reveals chemotherapy effects on prefrontal cerebellar system when related to dorsal attention network

    Get PDF
    BACKGROUND: Functional brain changes induced by chemotherapy are still not well characterized. We used a novel approach with a multivariate technique to analyze brain resting state [(18) F]FDG-PET in patients with lymphoma, to explore differences on cerebral metabolic glucose rate between chemotherapy-treated and non-treated patients. METHODS: PET/CT scan was performed on 28 patients, with 14 treated with systemic chemotherapy. We used a support vector machine (SVM) classification, extracting the mean metabolism from the metabolic patterns, or networks, that discriminate the two groups. We calculated the correct classifications of the two groups using the mean metabolic values extracted by the networks. RESULTS: The SVM classification analysis gave clear-cut patterns that discriminate the two groups. The first, hypometabolic network in chemotherapy patients, included mostly prefrontal cortex and cerebellar areas (central executive network, CEN, and salience network, SN); the second, which is equal between groups, included mostly parietal areas and the frontal eye field (dorsal attention network, DAN). The correct classification membership to chemotherapy or not chemotherapy-treated patients, using only one network, was of 50% to 68%; however, when all the networks were used together, it reached 80%. CONCLUSIONS: The evidenced networks were related to attention and executive functions, with CEN and SN more specialized in shifting, inhibition and monitoring, DAN in orienting attention. Only using DAN as a reference point, indicating the global frontal functioning before chemotherapy, we could better classify the subjects. The emerging concept consists in the importance of the investigation of brain intrinsic networks and their relations in chemotherapy cognitive induced changes

    Improving strain diagnosis of prion disease by diffusion MRI and biophysical modelling

    Get PDF
    Sporadic Creutzfeldt–Jakob disease (sCJD) is the most common form of prion disease, characterized by five different strains, presenting intracellular vacuoles with different diameter/distribution. Unfortunately, no reliable non-invasive method for strain identification currently exists. Here we provide the first quantitative maps of MR-measured vacuolar diameter/density in five sCJD patients, using multishell diffusion MRI and biophysical modelling. Results show distribution of small and larger vacuoles in the brain lesions of each patient, presumably corresponding to different sCJD strains, and absence of vacuoles in five age-matched healthy controls. If validated, this method would be extremely valuable for non-invasive diagnosis of sCJD strain

    Emotional imagination of negative situations: Functional neuroimaging in anorexia and bulimia

    Get PDF
    AimThe present study aims to extend the knowledge of the neural correlates of emotion processing in first episode subjects affected by anorexia nervosa (AN) or bulimia nervosa (BN). We applied an emotional distress paradigm targeting negative emotions thought to be relevant for interpersonal difficulties and therapeutic resistance mechanisms.MethodsThe current study applied to 44 female participants with newly diagnosed AN or BN and 20 matched controls a neuroimaging paradigm eliciting affective responses. The measurements also included an extensive assessment comprising clinical scales, neuropsychological tests, measures of emotion processing and empathy.ResultsAN and BN did not differ from controls in terms of emotional response, emotion matching, self-reported empathy and cognitive performance. However, eating disorder and psychopathological clinical scores, as well as alexithymia levels, were increased in AN and BN. On a neural level, no significant group differences emerged, even when focusing on a region of interest selected a priori: the amygdala. Some interesting findings put in relation the hippocampal activity with the level of Body Dissatisfaction of the participants, the relative importance of the key nodes for the common network in the decoding of different emotions (BN = right amygdala, AN = anterior cingulate area), and the qualitative profile of the deactivations.ConclusionsOur data do not support the hypothesis that participants with AN or BN display reduced emotional responsiveness. However, peculiar characteristics in emotion processing could be associated to the three different groups. Therefore, relational difficulties in eating disorders, as well as therapeutic resistance, could be not secondary to a simple difficulty in feeling and identifying basic negative emotions in AN and BN participants
    • …
    corecore